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0. Introductory remarks

Design of vibratingvstructures has been carried out on trial
and error basis. No comprehensive theory exists at the presenf
time, although some progress in optimizing the design of a:single
eleﬁent’has been made. Prager and his collaborators worked pri—
marily on optimiiation of thé deéign ofba single beam, making‘use
bf“the Betti—CastiglianO’deflecﬁion formula and dexiving“some‘
thébretiéal fesultsvfor optimization of Weight for a given‘de4
flection at a known point along the length of the beanm, and_re—
lated problems~(see'[7] of [8]). A more difficult problem of
- simultaneous optimal design and optimal control was considered by
Komkoﬁland quéﬁan in [4], however the'abplications of their work
remain‘limited, and no géneral optimization thebry'was deri?edQ'

  A diffefent static optimization was pursued by Haug [31,
Haug et al [2]; and othets, who attempted to derive algbrithﬁs
for gradual impfovement in designvbyvan iterative proceés, - So
far the numerical results obtained at the University of Iowa are
promising, and have been applied to some problems of weapon design. .

The purpose of this wdrk”is to geﬁeralize'the fesults 6f t3]
via senéitivity analysis. In particular to derive sensitivity
(to design chénges).for beams, plates and genefél stiuctures,
and to translate these theoretical results into a.computational
algorithm using some form of thé steepest deScentyalgorithm,-‘

| A particular application-of the teéhniqﬁe derived by Komkov

and Coleman ([4])‘is”given to the problem-of a gun.tubé design.
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1. A class of optimal design problems described by a‘distribﬁted

parameter system.

Consider a design problem postulated on a subset O < Rk, with

a local coordinate system X = (Xl’XZ"“'Xk)‘ The state of the
system is determined by an n-dimensional'vectOr'fuhction z(x),
which is an element of a Hilbert space H, .

The design of the system is described by an m~dimensional

vector function u(x). There are constraints on stress, deflection,

~

etc., and physical constrains on the design vector 9(5)’ The
set of m—aimensional vector functions_satisfying the constraints
wiil be called the set of admissible deSigns and will be denoted
by U(x). | |

~ The state vector z satisfies a 5ystem of differential equations
L(B)E = Q(?EIE)I ?5 EFQI v ! . (l)

where the forcing function Q is an element of a Hilbert space H34,
Thus L: Hl > H3. The state variable z also satisfies a set of

boundary conditions
B E(x) = §(§)' X € a8, ' ‘ . '(2)

Introduce also Hilbert spaces H2,H4 of functions whose domain
is 3@, and such that the boundary condition (2) is given as a
mapping B: H, - H,.

While the same symbol z is used in relations (1) and (2) it




actually depicts different classes of functions; HoweVer,vg re-
garded as an‘element of_Hl ® H, is continuous on @ Q o) and no‘b

| problems will arise due to'the simplified'notation. |

_ The - system (l) and (2) w1ll be referred as B.V.P. (boundaryf 3
'value problem)

Let A’denote the operator

(c

B
i '

‘Bb

Tbe’existence'of a unique solution of B.V.P. is eduivalent to‘the
etatement that‘A_1 is‘defined Well poeedness of tbe.problem, in
the sensa of Hadamard, 1s equlvalent to the statement that A -1 isz
~def1ned and 1s a bounded operator from H3 e;H4 ;nto:Hl.$‘H2.ﬁvThis
'”1s a well known property of stable structural designs.‘ ln an
1mportant class of structural designs, the dlfferentlal operator
,L also turns out to be positive deflnlte and bounded below
(away fromrzero), and-L -1 1s a completely,contlnuous operator.
Also'of interest in this paper are desions of structural mem-
bers eubjected to buckling and to natural frequency constraints.

- In each of these cases, the physical problem leads to an eigen-

" value system

ce, @

[

L' (0) y(x) = M) y(x)
By@=0 o, xedm, @)

where L' and M are symmetric, positive, bounded below differential



operators, ¢ is a real eigenvalue, and y(x) is the corresponding
eigenfunction. The eigenfunctions y(x) are normalized by the con-

dition

<My,y> = “lzl“ 2 - 1,

where |||+ || denotes the energy norm induced by the inner product

[X,¥] = <MX,Y>. The inner product ?§;X§ is'defined in the usual
way, i.e.v<§,¥>‘= f9§(§) ¥(§)vd§. |

One wishes to minimize, or approximately minimize, a func-
tional |

J: {H; ® Hy x U} > R.

Where J is usually either an L2 norm of ¥, an energy norm, or
a possibly non-linear, but positive functidnal. “Analytically'

J is of the form
J(z, z(w),u) = hy(2) + [ golz,x)ax + [ £,(z(w),u,x)dx. (5)
T o 7 v T T @ -~ o

The design problem may thus‘be reduced to séléctioniéf an admiési;

ble design 9(5) e U to minimize (dr approximately minimize) J, | -
subject to ﬁhe éonstraints (i) -~ (4) and performénce‘constraints |
of the form | .. |

=0, a=l,2..-;rl, (6a)

Vg = by (2 +A£an(5,§,g)d§ + éfd(g,gig)dg | -
: . . Co <0, a=r +1,...,r (6b)




| =0, B=1,2,...8%, N €Y
oo { xea
<0, B=ET+l,...,E. - o . (7B)

2, Comments based on computlng experlence.

-The p01ntw1se constralnts 7a) and (7b) are allowed to depend
: only on the de51gn varlable u. If the state varlable z were pre-
bsent, computatlonal dlfflcultles would arise later in the develop—
:rment. | ‘ . o
Constraintsbof the form n(§,9,§) 5l0,’§'e_9,>arise eften,
_however,»and must be treated It is readily seeﬁ that the poihte

l wise constralnt n(x) < 0. is equlvalent to the functlonal constralnt
oo+ In)]) ax = 0. ey
,Similarlyé ¢(x) i'aOvV§‘¢ £ is equivalent to

gl = ag) + [ex) - agld ax = 0.

3. Computatlon of Gateaux derlvatlves assoc1ated w1th an optlmal

de51gn problem.

. The standard definition (see [6]) of a Gateaux derivative
of a function f: lBl'% B, in the direction of a vector h is;emQ
ployed.f Here Bl’ Bz are Banach spaces; h € By. - If for a suffi- :
'ciently small value of the real parameter t

E(xghth) - £lxg) =t Lx¢+_r<xa;th5;,~_.'7 B )



where
r(xo,th) . ,
lim ||——————|| =0 P (9a)
t+0 t | _ -
and where L is a linear operator LX':~ Bl -~ Bé,'then'f is‘Géteaux
0 : 270 S
differentiable at xd (eB;), and the linear operator LX'~iS'Calléd .

-~ , . 70
the Gateaux derivative of f in the direction of h. If

r(xo,th)
lim ||——— || = 0

&0 t

uniformly with respect to all he B, on all bounded subsets of Bz,

and if LX is continuous, then f is called Frechet dlfferentlable
0 .
at XO'

Note: the left hand side bf‘equalitY'(9)‘wi11‘be'oalled7the'
Gateaux variation of f in the difectionih, c0mputed-at XO; |

In this paper By and'B2 are Hilbert spaceelahd, in the develop—
ment that follows, B, will be identified:with the Sobolev space‘Hk,
while B2 w1ll in most cases, be the reai line.

The mlnlmlzatlon problem con31sts of flndlng a minimum of a
functlonal J Wthh in many problems of structural analyels is a
quadratlc‘functlonal. Lzlnorm of the state varlable‘., an energy
norm, or possibly otbet uorms, subject to a constralnt imposed
on the state varlable, w1th Wthh must satlsfy the approprlate .
differential equatlons of mathematlcal phy51cs. ~That is, the

problem is formulated as mlnlmlzatlon problem for the functlonal

J(u,z,r,x) subject to dlfferentlalvequatlons_La'éecz. For example




Lz = rz may be of the fOrm g—-[EI(X) é—-;-—]~+,;z::_0.. Then the
- L - ax »dx- .

mlnlmlzatlon problem may be restated in an enlarged space as that

of flndlng the mlnlmum

-;2_3 2._

Al [<EI<X)(§;§ ,'§—§> + <;z z>] + AOJ,..

X

where AO’ Ai are Lagrangian multipliers. |
Hence the constraint equatlon is regarded as'onelof the
v.Euler Lagrange equatlons Wthh subject to some smoothness assump— o
- tions on- the statevvarlable z, is a necessary condltlon for the
-solutlon of the mlnlmum problem in the enlarged space.
Con51der the functlonal J(u,z,x,t) deflned by (5) and 1tsv
Gateaux varlatlon 8J, where 6h th (for sufflclently small (t)

and §h = (82, § u, 8z).v In a purely formal fashion‘one may'Write'

- sh Coag, TR a
_ 0 - 0 ) '
GJ—BC St +<3§.bl‘ GE>QQ " I > +<BE_',6E>Q‘+. r_(l’})l
| | | (10)
where <trt>g0 and AR AR are the approprlate inner products of

functlons whose domalns are 30 and 2, respectlvely, and

Ilr (h)[|
- lim ——— =
LA
The problem aris es of justlfylng thls formal approach by show1ng
_dlfferentlablllty of the operator L' w1th respect to the eigen—

value z. There are some obv10us dlfflcultles, 51nce L' 1s an un—'

ey bounded operator. Instead, the>fact thath l, deflned by la, 1s_.




a compact operator’in common problems.of structural»analysis;'can
be employed Hence, the elgenvalues of A “1 which are C—l, are |
a discrete subset of the real llne, i.e. the spectrum of A -1 con-
sists only of isolated eigenvalues, One may now involk the ‘
theorem on'bounded invertibility'(eee Kato t9] pp. 196—197) and‘

- a well knowh result on pertﬁrbatioh of epeCtrum of A—l} namely
that the speotrum of A_l changes contlnuously w1th A 1, such small
changes being 1nterpreted in the usual operator norm topology([Qﬂ.

- For example, con81der a beam equatlon of the form

é‘i VEI | VEI 957 oy o+ qh(x)y = £(x) + &y - (11)
dx dx : . S e R

o | o - L,[0,1]
subject to appropriate boundary oonditions. Let qn —> q,
f e L2[O,l], Then R(En)f% R(g), where R is theuresolvent,)and

lim gn = g, and & does not lie in the convex hull of Ehvimplies
n->o° ' . : ) ) : .

that the solutions of (11).coﬁvergelin L2[0,l] tofthe'solution of
the equation | |
42 &2 ) S - o
= VEI |[VEI =] |y + a(x)y = £(x) + &y. ; - (12)
dx ' ax”f - . _ _ _ S
The key in this discussion is the avoidance of sipéular pertur-
bations. ;
To illustrate this remark considervthe following'two examples.
The fourth order beam operator
2 | 2

— [EI(x) Q—I '
ax? dx™.
X

(13)




W1th boundary condltlons of either free support at both ends, or
vcantelevered ‘at one end, 1mp11es contlnuouq changes in the eigen-

values w1th a contlnuous change in EI(x). The operator

2 2 2

[ a® d d L
—-—z—:EI(X)'——— - O —7 (14) k
ax™ dxz_ oodx B
| v =yt =0 - | | .
Cwith (o s . o , e ,
= 0, ‘ ’

y(1l) = y' (1)

on the other hand w1ll cause singular perturbationé.’

(Note- ~This is exactly the example of 51ngu1ar perturbatlon -

glven in [9] page 436, example l 20) ) - | | |

That is, the exgenvalues of (13) are stable and of (l4)_are not.”

aNote- The dlscu551on of stablllty of elgenvalues can be traced

to Lord Raylelgh (see [10], page 300). | “
It is assumed in the use of formula (10) that A 1'is; compaoth

and that perturbatlons of elgenvalues of A -1 (and of A) are‘stable."

That 1s, one 1s deallng w1th a common case of stable structural

de31gn._

4. ‘Manipulation of formula (10).

'The'meaning‘of'dg and its relationship to Sn.needs to be
determined next in[the'interpretationhof formula (10). Regarding
8z as theiGateaux variation of the first eigenvalue of the system
'L‘y‘=‘tMy,‘and'assnming'that L' and M depend holomorphically on n, |
it 1s poss;ble to apply Aronsza3n s theory of general quadratlc |

forms and justlfy formal dlfferentlatlon of the a55001ated Raylelgh




10

quotient. (see Kato [9], VII ~ 83, pp..421—422);

The first elgenvalue of the system is equal to the value of

the Raylelgh quotient

<L'y . ¥>g ER S e
T o |

where ¥1(x) is the corresponding elgenfunctlon. AssUming symmetry
of L' and M and positive definiteness of M, and using formal rules
of Gateaux or Fréchet differentiation (see for example the intro-

ductory notes in [ll]) fer the Rayleigh functional,eone obtains

"Clh = Q&yllyl> - {<L'yl h'yl> é yl'yl > < YlIYl>
( Myl.yl:> ) [ (;Myl h'Y1>> <<¥Y1'Y1 i> 1}
- . -1 /1 _’
B <M¥1'¥1> q <L 11 h'yl> <MY1 h'yl> L&'y
where subscript h denotes Frechetmdifferentiation with respect

to a typical component h of the vector u.

Expressions of the type (L' y) " have to be carefully 1nter—
preted, since yl and the map L' both depend on h. If both are

Frechet dlfferentlable, the follow1ng rule is ea51ly justlfled -

s(Ly) = (L)y + Léy s
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or equivalently

~

Ly, = Lpy + Lyy

o where L,y has to be interpretéd as the Gateaux variation of tﬁe

operator L w1th Yy regarded as flxed, whlle Yy is the correspondlng
varlatlon of y. » o ‘ A

Observe: L(hy+th)y (h +th)—L(h0)¥(h0)‘=_[L(h0+th)¥(hd+tﬁ)¥L(h6)¥§ho¥th)}:
+ [L(hy)y (hytth)-L (hy)y (hy) 1. | | PRI

The Gateaux varlatlon of the flrst elgenvalue Gcl is glven by »
3(L'y N Py N
l i- g -~ X
ey <MY1'Y1> < Y1>Q c—-—‘wuyl}Qéu
>’+E <3L Yy - 6Myl 2 :> } éu.

Since y, is the eigenfunction of (3) the last term can'be Qﬁittéd,

and ; : o : 3 (R o :
(Myl'yl> ‘IYl 9 - C "‘—"“‘"“""' '¥l> u-
(17)
BL Y3 ‘ ' ’
.Note.b -3———7yl;> . .is not a scalar, it 1s a vector 1n the -

space dual_to u. The same remark applies to the Vector

aMyl ‘ o
3a Y1 .
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5. An”adjoint‘problem.

Since the generalized displacement (or state) vector z is an '
element of the Hilbert space Hl ® Hy, its dual (the generalized
force) is an element of the same Hilbert space. The duallty is .
maintained for sake of phy51ca1 1nterpretatlon. |

Let A be an element of the dual space, satlsfylng the dlffer-

ential equation

5 9%, | L | .
N T o ‘ S ~ (18)

where L* is a formal adjoint‘of L, Satiéinng' _ .
<W LZ> *Wz> + CW,z'i> 4 o | S (19)
~'v S an cT |

where C is a linear operator C: H, > Hy.

AJ

~

satisfies bouﬁdary condition
90 .. _ ‘ , ‘ o o -
AN ) . '
for every admissible ¢z, which is certainly satiéfied’if
99y o o .
=2 on. @ .

Hence

9

N E, N o
<L65,_ §J> =<§-§—0— , 65> + <c5.f3',~65'>
Q . Q o
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and

§J = -s-t—o- GZ; + < B———, GZ> + s—é——, (SZ> + < -s-——, 6u> .

“ =§fgﬂsg +<?;,su>, +<A (“LZ’ )Gu > <;"9,a,g>.
PR |

‘ ~ ‘ . L . ’. ‘Q.:' "

IR

epers g Z.}';69:> . S e

,=_§—2 +j§J (ié%ﬁl )

T

S

is the sen91t1V1ty vector 1f 3—9 g ~ 0, i. e._the flrst natural

frequency does ‘not change sxgnlflcantly with the adm1881b1e changes

in the design. ‘ | o e
: aho

If the term T 6; can not be 1gnored, a subétltutlon of . (17)

into (23) ylelds

dh, | o, o(L'y a(My)
=1
6J\= 3?9' <Myl,yl> {<[——-5—--L- yl ‘,“c

yl ,?6u>> }

1':\'

T A < ol s > (5)

7 _ _ : S
"A is the sen51t1v1ty vector for optlmlzatlon of J.-.‘v_
It is SLgnlflcant that no boundary terms (; e. products in :““

jHZ) occur in the formula (25)



- where L' = V?(D(x,y)vz) and M

| wz)._ Identifying ho(C) as ki, g4 = 0, £, = ﬁOu, the sensitivity

14

6. An example. Consider the dynamic problem of.thin'plaﬁe theory

' represented by the equation

g | 2 ek
V20 (x,y) VW) + 0¥ = a(x,v)e?t, x e, t > 0.

After separation of'variables, this is reduced to an eigenvalue
problem |
(L' 4+ CI) W(x) = Q(x) | X = | . (28)
: o N B Y S :

s

I is the identity operator.

Design a plate of a given weight (say unity) such that the
average kinetic énexgyrtakes an approximately extremal'Value. The
deﬂggn pérameter_u(§)~is'the thickness of the plate. The'plate
is clamped on‘the boundary. In’factvthis problem is equiva;ent-i
to looking for a low approximate value Of the sehsitivity vecﬁdr
" _ o ,

-~

The cost functional J is identified as
3=, [y ulx) dx + ko e - @n
where k is a known constant. (Recall that ¢ is proportional to S

vector is computed as

. JEug .B(V?yl)i}' :>
_ v )
12(1—v2) ou 'vl

: ' ‘ . Euh ..
1 _ g -1 - < 2,770 2 '
A_ = .uo + k <Y11Y.l Vv (—"—'—2_‘ - ‘\7 Yl +




'_15_1

- C<’a"{1'}" ‘yl> : ; - . o (28)

. ' ENS
‘SuPp051ng that Cl and yl(x) are known and ET —t

1s computed the sen-
;;31t1v1ty vector (28) can be computed 1n terms of known phy31cal
quantltles. An optlmum desmgn requlres near Zzero sen31t1v1ty.
tIn order that u, is optlmal 1t is necessary for A to vanisgh.
'KHowever equatlon (28) is dlfflcult to solve for Uy and gradual
‘1mprovement approach is generally used for suboptlmal design.
| If A is not zero then following a steepest descent appraoch one
could choose Gu in the dlrectlon of —A This is 1ocally optlmal
dlrection. In general the constralnts 1mproved by phy51cal
*con51deratlon may not be satlsfled by altered desmgn vector u +
‘Gu.j Varlous ver81ons of the gradlent—prOJectlon technique have
-heen used to correct thls defect. . |

N For an arbltrarlly chosen design, the decrease 1n the mag-'
-nltude of the sen51t1VLty vector 1ndlcates the degree of 1mprove-

‘ment.ln the correspondlng step of the steepest descent‘algorlthm.»

7. A theoretical foundation of the gradient projection'algorithm.

"suppcse that one wishes to minimize the cost functional

J(z(u) ,u) subject to constraints of the form

_where z belongs to a Hllbert space Hl, b to Hz,:and A: Hl[% Hy

,1s a bounded operator w1th closed range, whose domaln 1s dense
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in HlQ

A and u denotes an m—dlmenSLOnal vector, called the des1gn.

For subsequent analys1s, N(A) denotes the null space of -

It is assumed that J(z(u) u) = J(u) is a Frechet dlfferentlable
functional. J (u) will denote the gradlent of J In the pre-
vious discussion of.sen51t1v1ty-(parts 1 - 5) of this paper'Jf(u)
was identified with the Qector i

Suppose an initial choice,ofvdesign u‘is made, Uy e with the
corresponding valuevd(uo) computed. Az(u ) = h(uo) is (approxi_
mately) satisfied. Choose 6u, so that ”bu”F < € (in fact the
choice will be HBuHI = g, unless a change or a refinement of step
size is required). If no constraints were present; the steepest
descent condition would be (for some constant k:>H0)v69 = —kS'Yu ).
Note that 3'(9) is an m—dimensional vector in the space,duai to U.
Mathematically these spaces ate indistinguishable,vi.e. isometrically
isomorphic, even though the phy51cal dimensions are different.
For this reason the symbolism Gu = -~k J° (u) makes sense. Of
course in the general case such ch01ce of change in the des1gn
u W1ll violate the constralnts. | |

For the sake of convenience the constralnt can be put in the

form of a functional equallty
Y(u) = 0, ¥: U > R.

For example, A z(u) - b(u) = ¢ can be replaced by w(u) = |a z(u) -
biu) | = | ' |

In discussion of this technique the following problem will




be considered firSt:' The»functiOnal J(u) is to be minimized,

subject to a constraint Au = 0, where A‘iS'linear\operator;‘

Az ,Hl*Hz' : : : . ‘ ,
i In thlS case the algorlthm descrlbes a consecutlve steepest o

descent and pro;ectlon on a constralnt surface in a 51ngle step.

'.'J'(u) can be unlquely represented as a sum of a vector in N(A)

n,iand’a vector'rnvthe.range‘of A*; (Recall that»R(A*):='N(A) )

S3U(un) =y, + A% gy
J! (u ) = xp + A N, . - S (,7'11)}
where . _
Hencé, _ | | |
0 = -AT' (1 v * . o e

Slnce AA* 1s 1nvert1ble on (N(A)) (Qn@.“oﬂe (N(A))L)"no
- can be computed as
ne = -t a@rw). T V'Y
0 1s the orthogonal progectlon of -J (u) on the constralnt hyper#
'surface Au = 0. |
Settlng ul = 90 + 0y, completes the flrst lteratlve step,

where o + aY, is a constant chosen to satlsfy constralnt on step

: 91ze, 0 < o < 1.\ The 1teratlon proceeds accordlng to the formulas



18 7

fr =8t ()
If the problem'has a uniqﬁe solution, this:iterative technique . &Y,
.converges to that SOlﬁtion'(See_[lzjl. ) | |
Critigue.. In most structural de51gn problems, operator A is not
llnear, A*'ls generally undeflned, and the above technlque appears
to be dlfflcult to apply. However if the constralnt functlonal is
Fréchet dlfferentlable, then locally (for small varlatlons of the
parameter vector u) the constralnt can be approxlmated by a llnear
one. That‘;s_the hypersurface Y = 0 can be locally approx1mated
by 'a supporting hyperplane. : However the steepest descent step
is pronected on such a hyperplane and not on the constralnt sur-'
face, which means that the constralnt,ls not satlsf;ed, but is
only approxlmately satlsfled. ‘_ e | | d

An addltional correctlon could be applled at each step (or )
only at certaln steps) of thlS lteratlon to 1nsure exact compllence
w1th the constralnts._ For example, a step Su = -8y, 0 < 8] <1
can be put in, with IBI estimated to be Hw” Hw H 2, to reduce

‘close to zero the value of el B is pos;tlve if w 1s p051t1ve,

and negatlve 1f w 1s negatlve._‘“
NI

Remark -In most englneerlng problems exact compllence w1th con—"
stralnts is not very lmportant, s1nce the COnstralnt condltlons
- are inaCcurate‘and wereider;ved‘follow1ng some 51mpllfy1ng assump-

tions.
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72, Haug s varlant of the steepest descent algorithm for structural

de51gn optlmlzatlon

In [3] Haug has employed a technlque whlch can be regarded as

a varlant of ‘the gradlent pro;ectlon method. Further reflnements

'--and gome - changes in this approach were glven by Haug, Arora and

Matsui in [14] The problem involves mlnlmlzatlon of a functlonal

g

wo(u,z,c), subject to 1nequa11ty constraints ¢(u) <>0, w (u) < 0

j = 1,2,...,k; as in (8) p01ntw1se constralnts ‘being replaced by
functional constraints. As usual

= Cogetud, oy = (o, sud+ Ky, 82) +<y 00 (7.6)

Exp11c1t dependence of &8y on &z and 8¢ is ellmlnated by perturblng
the state equatlons (1) and the correspondlng Hamlltonlan functlonal:

FL(z,u,2) = <L<u>z, X = <0, x)- w<u o, on

‘where‘l is physically a dual element of'Q(x,u). Slnce the dual of

Taking a Fréchet

3 A is an element of the Hilbert space'H

H is H H,.

3!
derivative of FL with respect to A one recovers’thevequation (l).

Differentiating with respect to z, one arrives at the adjoint system

L* (i = -y, (7.8
lhls leads to 1dent1t1es | S ‘ .
(s L62)+ (., (L), 6wy =0 B T TS
(L A Gz7+<>\ (Lz)u.ﬁg) =0 o | | (7.10)
’_",(“”z’ _Sﬂg) +<{), (Lz) su) =0 (7.1
Since (Lz)u Su ;~—L‘6z, dependence ofddw on 8z is eliminated;i If

y is an eigenfunction of the system

~
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Liwy = ¢ M(u)y S o (7.12)
where as before M is positive,fdefinite,'and symetric, one derives
an identity _

(yo (@, - tay) ) sud = 8¢ Since (y,M(u)y > =j1

8y = <Yy, Su) + <%, (L2) Sw> + Y (y, ((Ly), - C(My) su?

=<A ,8u) <4y . — o | (,13)
Here one is approximating‘the non-linear terms bY“firSt order‘lin-
ear approximations.

A constraint on the magnltude of Su is 1mposed by requlrlng

(Wdu, 6u>< g where the operator W (the welghlng operator) is p051—

tive deflnlte, and symetrlc. ‘§2 is chosen suff1c1ently small for
the particular problem. |
Application of the multiplier rule leads to the sét of equations

AC 4+ ueg + FTA + 2VeW Su = 0

b 6u =44 =0 | - S (7.14)
yoo A 8w —Ayr =0 o (7.15)
ve{{Wou, 8u) - 52} =0 I (7.16)
S L ‘ o no . cL
Here ( . ) means the product A - B = I A, " By as used in °

éhevsystemvof equations (7.14) - (7.16), The'equations (7.7) -
(7.11) can be formally solved for éu, while (7.14) - (7.16) can
be used to eliminate the multipliers. . ‘ '

The follow1ng formulas are derlved.

sul = w l[i - (¢ W le ) l ;uW'%]

i
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' where L "v " v
<Awl[1'—‘ (¢ W'l’;T) | l] °>
_'MW =<A'W—’v‘¢u('¢uw_ ¢ ) | A¢> |
i‘vend; o . o -
R -1 T L 7]~
My, <A wl o - u{¢w ¢) ¢uW]A
s Lo tms e\l e 1) oy
ij’-—<A,W [Iv— ¢v( G ¢u) .¢uw‘]A:>,
hwhiielsu is glven by | R
| hGu é‘e%v Gul +v6u2,
§u? is'baeiealiyvthe cohstraint eerreceioh;e§ulbgiﬁes:a etep‘in |
the difectien of hegativeygredieht projection. hSimultaneousvap—b
pllcatlon of Gul, Gu cohstitutes‘Haug's version of the ﬁodified
hgradlent pro;ectlon method. | | B
Appllcatlons to truss, beam, and plate deSLgn can be found

in [14]

- 8. thimal'de51gn Uf‘statically'determxnate'structures.

‘:Invthe etatica;ly determlnate casei the loads-and momente
- transmitted by'the}members are independent of the'geometric_
design{of'eaeh.meﬁher.; Hence 1f the de51gn vector influences
only the cross- sectlon property of each member, the sen91t1v1ty

vector is relatlvely easy to compute.':
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As an example, con51der a statlcally determlnate beam 1n pure

bending. The deflectlon is glven by the Betti formula

X o | , v R | o
v - [ MERED a - Fdew. e
o AL : _ SR | R -
where M (the moment applied) ahd'm (the momeat at'xvdue to a'unit -

load at £) are 1ndependent of the desrgn u(&) Using rules of

'Frechet dlfferentlatlon the sens1t1vrty operator %% is computed as

‘@
sl=

LtwmHrmE o 82

In the statlcally determinate case it 1s therefore unnecessary to
eliminate %g, 51nce all terms in the formula (8 2) above are
known.
_The,sehsitivity vectorqu'can be identified with the Frechet

derivative:¢
if no constraintstare"imposed. A trivial result is obtained by
"setting AJ = 0.

| If a welght constraint, and or mlnlmum cross- sectlon, or

maximum stress constralnt is 1mposed the optlmum des1gn solutlon

becomes non-tr1v1al.

~1
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In case where a functlonal relatlon W(u) can be derived for
_the constralnt v < c, the necessary condltlon for optlmizatlon of
.the desmgn u is ofkthe_form
Ao -2 oy 8I(w) L, By _
(MI “(u) * m) ——=~ + A = 0.

S du "1 3u

This remark'is illustrated by the following design:nroblem.'

9. A design problem for an primal'shape‘of a<gun’barrel.
The gun tube design can be regarded as a one parameter
nfamlly of maps h(x) € Hy > max le(x)l € R. Hl is a class ofa
functlons obeylng certaln constralnts, and 1t w111 be called
the class of adm1351b1e thlckness de51gn functlons. Phy51ca11y o
h(x), x ¢ [0, 2], represents the thickness of the gun tube. ‘Ro

Wlll denote ‘the callber.;.' - .
‘ h (x) LY

/——' > ~ g(X)

a:(it)/\ e L / _/,/

r(x)_(quy'fdrces)

b(t) [ |

.‘F§; 

- figure 1 s R RN !
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We formulate the optimization problem as folloWs:

Find an L, [0, 2] ‘function h(x), x e [0,%] suCh thatvm%n (max'

[y? (h(x),x)|) < mln(maxly (h(x),x)l) for any other choice of '

h(x) € L2[0 2],vw1th the constraint h(x) < h0 Vx € IO 2], the max-'
imum stress constralnt o max RN and weight constraint W < W0

The gun tube is assumed to be a cantllevered beam subjected to

the a prlorl glven acceleratlons in the dlrectlon of its ax1s

and in the plane perpendlcular to its axis. If more than one

opt1ma1 de31gn ex1sts, then the design Wthh is optimal accordlng

to our criterion (i.e. it minimizes max dy(h(x),x) ) and whlch

also results in smallest total welght is deemed the optlmal de51gn.

Mathematical'formulationJOf’the prOblem

Since the beam 1s szmply cantllevered,‘and we have a stat— ‘
1cally determlnate case, we can use Prager S approach " The
bending moment M(x) and the moment m(x—xo) (at X due to a unlt
load pOSltloned at xo) are 1ndependent of the de31gn.. Castlgllano s
theorem can be‘rewrltten-ln the form. |

hyomx-xgdx. o (9.1)

1k

ylxg) = E = [ (I(x))
We seek to minimize max|h (x )| = max { f(I(x) ~Ly (x) m‘(x-xo)dx},
X, € [0 2], subject to constralnts f P dx S Wy 1, o (9.2)

0 Bay ‘ M) ee ) |

hix) 2 By l“z?(:?)‘"- - T(x [8.3)

A
-Q
~

where ;A(X)’=,ﬂ(ﬁo +h()? - ﬂRg - - o o v_ (9.4
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ﬂp(Ro + h(x).)4 ,.an04-"
I(x) = ~ -
' 4 4

(9.4P)

¢ is the material density, a

maX_is maximum acceleration exper-

b‘“lenced by the gun mount.,
The maximum force (per unit 1ength) due to 1nert1a1 load is
2

q(x)_s‘f maxﬂp(h + R ) 0); - | 7 (9.5)

Note: h
| In this computatlon we shall 1gnore the possibility of
’htors1ona1 v1bratlon and stresses and use the formula g = % + %Q.
It is done for reasons of s1mpllclty. However, 1ncorporat1ng
the effects of tor51on stress into thlS computatlon 15 qulte

stralghtforward

The static deflection’is-given by the formula:
y(x4) = E / { (IR, +h(X)] -R )} -'M(X)'m(x— o) dx. (9.1%)
o o -
It can be shownwthat:‘
d

= g1 [ 32 ([Rd+h]4eRg}’lM(x) a§a_(m(x-x0))‘dx (9.6)
0 - : o o . |

% |

X =x0

_Let us denotevthe quantity ‘(9:6) by é(xo) The problem is now
reduced to the flndlng of necessary condltlons for mlnlmlzatlon
-k.of.max |6(x0)| subject to constralnts (9.3). |
The formulas for M(x) and m(&)(&-x—xo) are. glven respectlvely

.by=" M(x) fqm (e-x)af o (9. sa)
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where q(x) is given by eéuation‘(Q.S)

m(E) =_U(—E), where U(E) is the'unit step function

U (&) 0 if £ <0

=14if & > 0.

Ut (E) = §(E) (8 will denote the Dirac delta function).

Hence we have

£ a0 J2 rgr) S-rGD TH 6 (0

6(x) =
- (Bl M) - (RgrhG1Y - R (9469
(* denotes the 0peretion of convolution).
We consider two possibilities:
(a) max |8 (x)| occurs at an interior point of [0,21. .
x €[0,2] ' ' ‘ E B
Ab) le(8)] = max  [e(x)].

xe[0,2]

The case (b) will be ignored for the time being, since 6(%) is
easily computed (for a glven design) and Prager s arguments ([31)
can be duplicated with only mlnor modlflcatlons. The case (a)

is more complex.

Our discussion will concentrate on minimization crlterla

for the case (a),,and only a final comparlson shall be made to -

check if |6(%)| exceeds max = |6(x)|, b < 2.
erO,b] o ‘
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A necessary criterion for optimizatian"Of'an‘interibr“maximum :

| _(case'(ﬁ)).

. Following the Komkov-Coleman technique outlined in [4] we

‘ equate‘to,zerd the Fréchet derivativefof the'functiohali

e lem

,Q‘h)‘é Ade(h) + Al(h—ho) + Aaf + T(R)

A(h)
a R B S .
+ s gz (0(0) + 2 A(xNax -w). (9.7)
- o B Y '

% = Mo () TH (Gex (~2mph) ) [(Ro+h)4—Rg]—(WDX*((h+R0)2—R§)}‘

$RH)7 4 A1+ A+ Ay (sign) (D)) + Ay § (8) =0 (9.8)

‘The Frechet derivative of 6 (h(x),x) denoted by Gh is exactly

the first term of the above expression, i.e.

o () = (1%3)'1{(<x*(—2nph))-[(R0+h)4 - R3] + (-mpx*

((h + R.)2 - R2)+4 (R +h)3}. F S (9.8®)
70 0 0" | S | )
(as before * denotes thé=operation.qfvconvolution). }A“;XI,AZ
obey the inequalitiesz‘v
>‘~_1‘_f. 0,: )‘2, S -0'..}‘1, _<_ 0. _ S . “ - 5 S0 (9.9)

Age X+ Ays X,, are constants, but A; must be regarded as an
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unknown fhnction.ﬁ The relatlon (9 8) and 1nequalit1es (9.9) deter-

mine a necessary condition for a maximum of B(X) subject to the

constralnts (9.3). o - : - - v
The necessary condltlon for optlmlzatlon of maxle(x)| (x-an

interior point of [0,2]) given by the relation (9.8) states that

d

= (Bh) lies in the forward cone of the three-dimensional subf .

space of L2[0,2] spahned by'eh, Ah’ and by

0-a

{(eign M(n)) - HS), - mAX p 3 (9.10)
I a%(n) B '

where subscripts denote Fréchet differentiation. %E(eh) is

computed directly.
do = (E§R) -1 (1-2moh (Rg+h) -RG) + LGk (-270m)) - ((Ry#h) org)
~(amp* ((n + R)Z-RD)) - (R + h)3] - 3(mox* (b4Ry) 2-RD) *

Ry + W2 B0} . | | ©(9.11)

We observe that eh(X) satisfies a first order differential equation

(8), which is;

Aoby * Ay = (6,) = ~A;=A, (sign M(h) (-— n) APy 9.12)

3
the boundary point x = 2.

A, = 0 corresponds to the case when maximum of 6(x) occurs at
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Moreover, A (x) = 0 for some X € [O ZJ implies that X is a

singular point of the equation (8), and;

R Y T - .M'(h):“;<1>;d.+h)
Oy (x) = jxt’fﬂxz-(sign M(h(x))f(}

X=X

(9.13').'

‘I(h)

vHoweVer, éh is a known functlon of h(x) (see equation 8a) and
1the numbers obtalned by computatlon (9 13) and (9 8a) after substl—n
tutlon of some de51gn function h(x) will generally fail to be
: fequal The poss1b111ty that they could be equal w1ll however
gremaln, and an addltlonal check will be added to the computatlonal
algorlthm to take care of that pos51b111ty. | |
The preceedlng example could be rewritten to 1ncorporate the‘
”results of sectlons 4 and 5. Assumlng that the gun barrell =
v1brates with a natural frequency Ty the dlscuss1on above can-?
be modlfled by 1ncorporat1ng the addltlonal term similar. to the

: 2
second term in equatlon (28), where V2 is replaced by g‘?' and
: dx

Yl by Yi(X)‘which is corresponding eigenshape.

10. An example of computation

U51ng the theoretlcal approach of sectlons 4 and 5 E'T “Haug,
S.S. Arora and K. Matsul have programmed an optlmlzatlon algorithm
for a 51mp1y supported beam of rectangular cross sectlon w1th b
'Wldth/helght ratlo of l 2, and I(x) e‘%u (x) where u(x) is the
de51gn parameter.- | | ‘ o

The loadlng is shown below
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1100 4in 1b .

— v ] N |
" JB / C
he—— 25" re— 15" —1
Figure 2: .

The lower bouhd‘on cross-section was selected to be .3645 in 2. .
The displacement constraint is A, the firét natural frequency is |
denoted by ;0.' The cost funétional is the total volume of ma-.

terial. (Here E = 107 psi, p = .00208 slugs/in3; The computation

was performed on IBM 360 at the University of Iowa. ConVergence

was rapid-no hofe than 35 iterations were.required in any com-
putation. The optimum design is illusﬁratéd below for various

values of A. | | |

It is interesting to observe how complexity of design is

influenced by the choice of AO in the constréint A < AO"

A similar phenomenon is observed if constraint on the value

of maximum stress is imposed, instead of the maximal displacement.
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A =0.30 40 Vol. = 16.135 1n.? (19.071 in.3)

o I

|84=0.1740.  vol. = 18.016 in.® (25.334 in.3)

v

|8 =0.104n.  vol. = 22,587 1n.3

A=0.15in.  Vol. = 18.608 in.3 (26.970 in.3)

1(33.031 in.3)

;6 = 120 rad/sec - Vol. = 17.640 in.3 '(18.892 in.3)

4 =0.154n. = g =120 rad/sec Vol. = 18.790 in,3

Variation of CrossfSectionai Area' |
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11.‘dConclUSions.

- The technique deriVed‘in'seCtions-4 —'6,,and the’more’spec-
ialized results of sections 8 and:9‘have'been shown‘to be‘adaptable
to numerlcal optlmlzatlon schemes which compare favorably w1th
'.other methods, such as adaptatlon of Pontryagln s max1ma11ty
pr1nc1ple proposed in 13]. Direct solutlons of the design problem _
with complex, non-linear constraints represents avnew result in ' |
this area of engineering analysis. Even the.optimization problem
discussed in section 8, and illustrated.in example 9 can not be
derived by a direct application of Prager’s resultiW The'problem.

discussed there is not the dual of Prager s problem [7], nor can

1t be deduced as a consequence of the works of Prager s collaborators

(which have not been quoted in the references)to best of‘our
knowledge.' f ‘ | |

Computlng experlence w1th the approach suggested ln thlS
paper have been satlsfactory,' In fact satlsfactOry_numermcalx_
results have been.obtained'in cases where theoretically the |
technlque derived here is not justlflable.

Addltlonal theoretlcal work is clearly needed. Perhaps, a
more sophlstlcated approach based on abstract varlatlonal prln-
c1ples (see [13]) may by- pass some of the dlfflcultles encountered

in juStlleng purturbatlon type arguments, or arguments based on

vanishing of Fréchet derlvatlve ‘and the use “of Lagranglan multlpller _

rule in problems of structural mechanlcs.v o

&
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